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Agent- Based Modeling

B RA N D ON  MA R S H A L L

1.  INTRODUCTION

The objective of this chapter is to convey the key concepts, overarching meth-
ods, and common applications of agent- based modeling in population health sci-
ence. I aim to provide the reader with a foundational understanding of how and 
why agent- based models (ABMs) are increasingly employed to address pressing 
public health challenges of the 21st century. I will demonstrate these concepts 
with an example from my own work using an ABM to simulate HIV transmission 
dynamics in high- risk populations. Readers interested in gaining a more in- depth 
appreciation for the design, construction, and validation of ABMs are referred 
to several excellent texts on the subject [4,  5]. I  conclude this chapter with a 
discussion of two promising avenues for the continued adoption of agent- based 
modeling approaches to improve population health:  the evaluation of policy 
experiments and evidence synthesis.

1.1.  What are Agent- Based Models?

ABMs are individual- based microsimulations that simulate the behaviors and 
interactions of autonomous “agents.” In most epidemiological applications, 
agents represent people who interact with each other to form an artificial soci-
ety, thus simulating a hypothetical population of interest. However, an ABM can 
represent any discrete set of units that interact with each other (e.g., hospitals, 
schools, or governments).

The evolution of an ABM is determined by pre- programmed agent characteris-
tics and by rules that regulate how agents behave, relate with each other, and inter-
act with the simulated environment [7] . Even models with simple rules governing 
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agent behavior can result in complex, unanticipated population phenomena [8]. 
By comparing model output under different rule sets, hypothetical public health 
programs and policies can be implemented and tested. Interventions that change 
agent behavior, alter contact networks through which risk factors or diseases are 
transmitted, and/ or modify environments in which health is produced can all be 
interrogated. Thus, ABMs serve as a highly flexible modeling laboratory in which 
a wide variety of interventions can be evaluated across populations and contexts. 
Although agent- based modeling within population health science has its roots in 
the study of infectious disease dynamics [9, 10], ABMs are increasingly used to 
explore the etiology and prevention of non- communicable diseases [11], social 
“contagions” (e.g., obesity, incarceration) [12– 14], and the effects of place on 
health [15, 16].

1.2.  Strengths and Challenges of Agent- Based Modeling

Like ant colonies, traffic jams, and stock markets, population health outcomes 
emerge from local interactions between autonomous units (i.e., people) and their 
environments [17]. Agent- based modeling, in which population- level phenom-
ena arise as a result of micro- level interactions among the agents, is thus well 
suited to the study of many population health systems [18] (Box 8.1). In fact, 
the ability to simulate emergence— the appearance of larger entities, patterns, 
and regularities from interactions among smaller or simpler entities that them-
selves do not exhibit such properties— is a key strength of agent- based model-
ing approaches [19]. In systems epidemiology, the unique contribution of ABMs 
and other “bottom up” simulation tools stems from their capacity to reproduce 
(and thus understand) the processes through which group- level phenomena are 
generated. For this reason, ABMs are commonly used to elucidate the origins and 
determinants of population- level protective factors (e.g., herd immunity) and 
harms (e.g., clustering of disease susceptibility) in human populations [20– 22].

A second strength of agent- based modeling techniques arises from the fact 
that agent- level outcomes are, by definition, non- independent. In most ABMs, 
an agent’s state is explicitly influenced by the status or behavior of other agents. 
Similarly, in infectious disease epidemiology and in many other health appli-
cations, an individual’s health status is influenced by the outcome(s) and/ or 
exposure(s) of other people in the population. In contrast, many standard causal 
inference methods assume that the effect of the exposure on an individual is 
independent of the exposure of other individuals [23]. This assumption has been 
extensively characterized and is widely known as the stable unit treatment value 
assumption (SUTVA) [24]. The paucity of methods to identify causal effects in 
circumstances when SUTVA is violated has led to challenges in identifying the 
individual-  and population- level effect of vaccines [25], and neighborhood- level 
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Box 8.1

HIV Transmission in High- risk Populations: An Agent- Based Model

Agent- based modeling has several distinct advantages over other mathematical 
modeling approaches. First, agents can take on a multitude of time- varying char-
acteristics, which permits the simulation of heterogeneous, adaptive, and com-
plex behavior in human populations. Second, agents interact with one another to 
form dynamic networks. Modeling these “relationships” permits the simulation 
and analysis of network effects (e.g., partner concurrency, epidemiologic bridg-
ing) that are difficult to capture with compartmental models [1] . We constructed 
an ABM to examine HIV transmission dynamics and the effectiveness of com-
bination HIV prevention programs to reduce HIV incidence among high- risk 
populations [2,  3]. In this model, agents form sexual and drug- using relation-
ships, which results in an evolving “risk network” through which HIV is transmit-
ted. The model simulates an artificial society of 100,000 agents, representative 
of the sociodemographic characteristics, epidemiological profile, and risk behav-
ior patterns of the adult population of New York City. This setting was originally 
selected because of the rich demographic, HIV surveillance, drug- using behavior, 
and social network data available. The model is coded in Python™ and simulates 
the passage of time in discrete monthly time steps.

Over the course of the simulation, partnerships are formed, maintained or bro-
ken, resulting in a dynamic sexual and drug- injecting network. The number of 
partners at each time step for each class of agent was specified by random sam-
pling procedures from negative binomial distributions, using parameters from 
previously published estimates. Assortative mixing is incorporated by weight-
ing the formation of partnerships between agents with similar characteristics. 
A snapshot of the agent network is shown in Figure 8.1.

In the ABM, the probability of HIV transmission depends on the infected 
agent’s HIV disease stage, HIV treatment status and adherence to therapy, the 
number of exposures (i.e., unprotected intercourse or syringe sharing) with an 
uninfected partner per time step, and the type of exposure (e.g., parenteral, sex 
between men, heterosexual). Moreover, interventions present in the agent envi-
ronment modulate the likelihood of engaging in risk behavior and the probability 
that an HIV- diagnosed agent initiated antiretroviral therapy. For example, injec-
tion drug- using agents who are engaged with a needle and syringe program have 
fewer risk acts with their partners, compared with other agents.

First, the ABM was calibrated to reproduce empirically observed HIV epi-
demic trends observed in New York between 1992 and 2002. Then, HIV inci-
dence trajectories from a “status quo” scenario (in which 2012 intervention 
coverage remains stable) were compared to those under hypothetical scenarios 
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in which various HIV prevention interventions are scaled up. A “high- impact” 
combination prevention approach, in which coverage for all interventions was 
increased by 50% from 2012 levels, not only produced the lowest HIV incidence 
in 2040 but also resulted in a more immediate and sustained drop in new HIV 
cases. Importantly, HIV transmission was not eliminated under any scenario 
tested, demonstrating the importance of comprehensive, high- coverage inter-
ventions. More recent work has sought to determine whether HIV transmission 
occurring during early and acute HIV infection stages will hamper the success of 
antiretroviral- based prevention efforts [6] .

Figure 8.1 Network agent- based HIV transmission model.
White: Agents acutely infected with HIV; Black: chronically infected agents; 
Gray: HIV- negative agent. Edges linking nodes represent past- month sexual and/ or 
injecting risk behavior. Note the cluster of acutely- infected agents forming a “core”  
high- risk transmission group.
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effects on health [26], among other areas. Agent- based models are not so con-
strained; disaggregating the influence of non- independence between units (i.e., 
“spillover effects”) from individual exposures (i.e., “direct effects”) is a useful and 
practical application of agent- based modeling in epidemiology [27].

Like all simulation models, the validity of ABMs depends on the strength and 
validity of assumptions made during the model development process. The avail-
ability (and accuracy) of empirical data with which to parameterize the model 
is also critical in many population health studies employing ABMs. The number 
of frameworks upon which to base the construction, calibration, and validation 
of ABMs continues to grow [28, 29]. Guidelines for reporting ABMs, including 
their key assumptions and more detailed elements, are also available [30, 31]. 
Nonetheless, agent- based modeling rests on the fundamental assumption that, 
for any given research question, people and their relevant health states, interac-
tions, and environments can be credibly modeled at a reasonable level of abstrac-
tion [28]. Meeting this assumption carries at least two important challenges. 
First, the researcher must decide which minimal set of characteristics defining 
the agents, their relationships, and their environments are needed to accurately 
capture the processes being modeled. Second, data or prior knowledge must exist 
to inform the specific structure and parameterization of the model processes. In 
the sections that follow, we describe the most commonly employed methods to 
help ensure that an ABM has internal validity, and that the model’s results have 
relevance to solving real- world problems.

2.  AGENT- BASED MODELING METHODOLOGIES

2.1.  Implementation of agent- based models

For an ABM to run, the model developer must identify, define, and program agent 
behaviors, agent- agent interactions, and the relationship between agents and 
their environments. The first step in this process is to specify a “target”— the phe-
nomena the model is intended to represent, reproduce, and simulate [4] . Since 
no model can capture all possible characteristics, behaviors, and environments 
that may influence a health outcome of interest, building a model for the target 
requires a theoretically motivated and conceptually grounded process of abstrac-
tion [29]. The goal is not to construct an all- encompassing representation of real-
ity, but a highly simplified depiction that nonetheless provides valid insights into 
real- world phenomena and improves scientific understanding [32]. Commonly 
employed conceptual frameworks in population health, including the social- 
ecological model of health behavior and the syndemic theory of disease produc-
tion [33, 34], can be helpful in identifying the core components of an ABM as 
employed in epidemiology. Given that simplification is a necessary step in all 
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models used in epidemiology, existing tools, including causal diagraming [35], 
may also be helpful in determining the key processes to be modeled in an ABM.

An ABM requires a set of code and a computational engine to be executed. 
Many ABMs are designed from scratch using all- purpose programming languages 
such as Python™, Java™ and C++. A number of modeling services (with preloaded 
libraries of commonly employed routines and functions) are also available. 
Among the most common programs are NetLogo (https:// ccl.northwestern.
edu/ netlogo) and Repast (http:// repast.sourceforge.net); other software has 
been reviewed elsewhere [28]. Once the model has been developed, the simula-
tion is run by having agents repeatedly execute their behaviors and interactions 
according to pre- programmed rules. Most ABMs simulate the passage of time in 
steps that are either discrete or activity based.

In an ABM, agents are endowed with static or dynamic behaviors that can 
depend on everything from simple “if- then” rules to complex adaptive processes. 
The model developer must also define which agents are (or could be) connected 
to whom and the dynamics of these interactions. The way in which agents are 
connected is referred to as an ABM topology. Common typologies include a spa-
tial grid, a more complicated spatial geography (e.g., agents can only interact with 
other agents who are nearby), or a social network. The typology of an ABM can 
also evolve over time. For example, in one study that used an ABM to evaluate 
policies to reduce influenza transmission in the workplace, agents were assigned 
to and moved between specific geographic locations representing schools or 
workplaces [36]. During each simulated day, agents could only interact with 
other agents who shared the same social activity location.

Agents can be entirely passive (i.e., purely responsive to exogenous 
stimuli) or seek to actively alter other agent characteristics or the environ-
ment. Therefore, unlike many socio- ecological models of health production 
which assume that health outcomes are determined by immutable upstream 
forces, ABMs allow individuals to not only interact with, but change, their 
environment(s). The environment may represent a set of geographic char-
acteristics (e.g., pollutants, crime, or other aspects of the physical or built 
environment), venues (e.g., homes, bars, workplaces), or institutions (e.g., 
hospitals, prisons). An agent’s location in the simulated landscape is usually 
recorded as a dynamic attribute as they move in space. Different types of envi-
ronments may promote, facilitate, or constrain agent behaviors. For example, 
in one ABM that simulated walking behaviors within a city, the agent envi-
ronment was composed of 400 equal- sized neighborhoods, each with two 
properties:  safety and aesthetics [37]. A  walking index (representing each 
person’s walking experience) was a function of both individual agents’ char-
acteristics (e.g., age, walking ability) and the safety and aesthetic quality of 
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all neighborhoods along a walking route. Each agent’s walking index in turn 
affected how much she/ he would walk in the subsequent day.

2.2.  Verification and Validation of Agent- Based Models

Model verification and validation are essential components of the ABM design 
process. Model verification asks the question, “Does the ABM work as intended?” 
while model validation seeks to determine whether the “right” model has been 
built. While there is no universal approach or consensus on how to conduct veri-
fication and validation in agent- based modeling, a number of principles and over-
all techniques are available [38– 40].

The goal of verification is to determine whether the programming imple-
mentation of the conceptual model is correct. This process includes debugging, 
verification of all model calculations, and determining whether equations in the 
model are solved correctly. Some common verification methods include de- 
bugging procedures, code “walk- throughs” (a form of software peer review), and 
boundary testing (i.e., determining whether the model performs as expected at 
the parameter boundaries).

Broadly, model validation is a process through which the research team 
assesses the extent to which the model is a credible representation of the real 
world. Several techniques are available to demonstrate a model’s validity. For 
example, a model is said to have face validity if content experts believe the model 
behaves reasonably well by making subjective judgments about its performance. 
Most ABMs also go through a procedure known as empirical validation. Here, the 
developer determines whether the model is a good representation of the target 
by comparing whether model output is consistent with observed data. Model 
calibration refers to an iterative process through which unmeasured or poorly 
measured parameters are adjusted until the model output is in agreement with 
empirical data. A  number of different approaches to conduct calibration and 
empirical validation have been developed and are reviewed elsewhere [41]. 
A variety of statistical tests can be used to determine if the model’s behavior has 
an acceptable level of consistency with observed data [42].

2.3.  Interpretation of Results from Agent- Based Models

Interpreting the output of an ABM has distinct challenges from other mathemat-
ical modeling approaches. First, isolating the causal mechanisms and effects of 
one parameter can be difficult in models with a high degree of agent heterogene-
ity and many interdependent processes. For this reason, conducting parameter 
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sweeps over multiple variables (frequently simultaneously) to understand model 
behavior is recommended.

Second, ABMs can be highly sensitive to initial conditions. In complex and 
chaotic systems, even small perturbations in initial conditions can lead to large 
differences in model output. We have previously shown that the identification of 
causal effects is only possible in models that meet a regularity assumption called 
“ergodicity” (for any given set of initial conditions, the model output can be repre-
sented by an ensemble average as the number of model iterations increases) [27].   
If non- ergodic behavior is present, the mean of model output across runs is not 
well defined, and casual effects comparing two counterfactual scenarios cannot 
be estimated.

Third, precise prediction of real- world phenomena under different inputs can 
be problematic when many assumptions are made regarding agent behavior and 
interactions. Given the complexity of many ABMs, the objective should not nec-
essarily be to predict specific population outcomes under different scenarios per 
se, but to conduct a robust policy analysis, such that recommendations consist of 
an ensemble of policy options which perform well under plausible model specifi-
cations and are robust to model assumptions.

3.  AGENT- BASED MODELS AND THE FUTURE 
OF EPIDEMIOLOGY

Epidemiology is, at its heart, a pragmatic discipline that identifies opportuni-
ties to control and prevent disease [43]. As such, epidemiologists must concern 
themselves not only with the isolation of causal effects but also with the identifi-
cation of effective ways to intervene. Doing so necessitates more than an under-
standing of the causal mechanics that link an exposure with a health outcome. 
One must also consider the population context (i.e., the underlying prevalence 
of the health condition and related risk factors) and how multifactorial causal 
structures interact to produce disease [44].

Agent- based modeling represents one (but not the only) method to synthe-
size prior knowledge of a population— and the causal structures that act on 
this population— to understand how an intervention could affect the public’s 
health. In this manner, agent- based modeling is a science of evidence synthesis. 
Specifically, ABMs (and other simulation approaches) represent a platform for 
the integration of diverse evidence sources, including inconsistent or inconclu-
sive scientific information, to support decision making for complex public health 
problems. Formalized methods and frameworks for the integration of diverse 
data streams into simulation models (and their implications for evidence- based 
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policy analysis) have recently been proposed for population health sciences 
[45, 46]. Continued adoption of these methods is warranted.

I wish to conclude this chapter by arguing that, although systems science in 
epidemiology and public health has “arrived,” more work is needed. Agent- based 
modeling of population health systems and the impact of hypothetical policy 
changes on health have led to novel scientific insights. However, the actual uptake 
of programs and policies informed by ABMs, and their subsequent evaluation in 
real- world settings, are lacking. A multidisciplinary and iterative science, in which 
model developers work collaboratively with interventionists and policymakers 
to implement, evaluate, and improve public health programs is needed. Further 
stymieing the uptake of agent- based modeling is the fact that systems science 
methods are not currently featured in much public health curricula or training 
[7] . Thus, the capacity for agent- based modeling to enhance the health of popu-
lations requires understanding and appreciation of the method among not just 
epidemiologists but also public health practitioners and population health sci-
entists broadly.
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